Design and Implementation of a Context-Sensitive,
Flow-Sensitive Activity Analysis Algorithm for
Automatic Differentiation

Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Argonne National Laboratory, 9700 S. Cass Ave., ArgonnéQ439
jaewook, malusare,hovland@mcs.anl.gov

Summary. Automatic differentiation (AD) has been expanding its rolecientific comput-
ing. While several AD tools have been actively developedus®tl, a wide range of problems
remain to be solved. Activity analysis allows AD tools to geate derivative code for fewer
variables, leading to a faster run time of the output codés phper describes a new context-
sensitive, flow-sensitive (CSFS) activity analysis, whicteveloped by extending an existing
context-sensitive, flow-insensitive (CSFI) activity aygs. Our experiments with eight bench-
marks show that the new CSFS activity analysis is more thatin®% slower but reduces 8
overestimations for the MIT General Circulation Model (Midm) and 1 for an ODE solver
(c2) compared with the existing CSFI activity analysis iempentation. Although the num-
ber of reduced overestimations looks small, the additlgndéntified passive variables may
significantly reduce tedious human effort in maintainingi@é code base such as MITgcm.

Key words: automatic differentiation, activity analysis

1 Introduction

Automatic differentiation (AD) is a promising technique snientific computing because it
provides many benefits such as accuracy of the differedtieade and the fast speed of dif-
ferentiation. Interest in AD has led to the development eksal AD tools, including some
commercial software. AD tools take as input a mathematigattion described in a pro-
gramming language and generate as output a mathematioadtoler of the input function.
Sometimes, however, users are interested in a derivatiaa afput function for a subset of
the output variables with respect to a subset of the inpuabkas. Those input and output
variables of interest are callédependenanddependentariables, respectively, and are ex-
plicitly specified by users. When the independent and depr@néhriable sets are relatively
small compared to the input and output variable sets of thetion, the derivative code can
run much faster by not executing the derivative code foritermediate variables that are not
contributing to the desired derivative values. Such véemhbre said to bpassivgor inactive).
The other variables whose derivatives must be computedaadsbeactive and the analy-
sis that identifies active variables is callactivity analysis Following [7], we say a variable
is varied f it (transitively) depends on any independent variabld asefulif any dependent

2 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

variable (transitively) depends on it; we say iigtiveif it is both varied and useful. Activity
analysis isflow-sensitivef it takes into account the order of statements and the obfiow
structure of the given procedure acdntext-sensitivé it is an interprocedural analysis that
considers only realizable call-return paths.

In our previous work, we developed a context-sensitive, flasensitive activity analysis
algorithm, called variable dependence graph activity ywigal(VDGAA), based on variable
dependence graphs [11]. This algorithm is very fast and rg¢ée® high-quality output; in
other words, the set of active variables determined by therizhm is close to the set of true
active variables. However, we have observed a few casessviheralgorithm overestimated
passive variables as active because of its flow insengitiitese cases suggest that the over-
estimations could be eliminated if we developed an algorithat is both context-sensitive and
flow-sensitive (CSFS). Such an algorithm would also be wsefevaluating overestimations
of VDGAA.

Often, AD application source codes are maintained in twe: gbe codes that need to
be differentiated and those that are kept intact. When thlesin the former set are trans-
formed by an AD tool, some passive global variables are aftemestimated as active by the
tool. If these global variables are also referenced by tlesdn the latter set, type mismatch
occurs between the declarations of the same global variat¥eo or more source files: the
original passive type vs. AD transformed active type. Samdituations occur for functions
when passive formal parameters are conservatively deteras active by AD tools and the
functions are also called from the codes in the latter setlfddrder to adjust the AD trans-
formed types back to the original type, human interventondcessary. As one option, users
may choose to annotate such global variables and formaiedess in the code so that AD
tools can preserve them as passive. However, this efforbeaadious if all formal variables
that are mapped to the globals and formal parameters foutiaibns in the call chain have
to be annotated manually. The burden of such human effottbeilifted significantly if a
high-quality activity analysis algorithm is employed.

In this paper, we describe a CSFS activity analysis algmritivhich we have developed
by extending VDGAA. To incorporate flow sensitivity, we usgiditions and uses of variables
obtained from UD-chains and DU-chains [1]. The graph wedbfal the new CSFS activity
analysis is called def-use graph (DUG) because each nodeseeyts a definition now and
each edge represents the use of the definition at the sinlke@&dbe. Named after the graph,
the new CSFS activity analysis algorithm is called DUGAAeTRubsequent two sweeps over
the graph are more or less identical to those in VDGAA. In avfod sweep representing the
variedanalysis, all nodes reachable from the independent varraizles are colored red. In the
following backward sweep representing theefulanalysis, all red nodes reachable from any
dependent variable node are colored blue. The variabléediflue nodes are also determined
asactive

Our contributions in this paper are as follows:

e A new CSFS activity analysis algorithm
e Implementation and experimental evaluation of the newrétlym on eight benchmarks

In the next section, we describe the existing CSFI activiglysis VDGAA and use exam-
ples to motivate our research. In Section 3, the new CSF8tgictnalysis algorithm DUGAA
is described. In Section 4, we present our implementatiehexperimental results. In Sec-
tion 5, we discuss related research. We conclude and difisuse work in Section 6.

CSFS Activity Analysis 3

2 Background

We motivate our research by explaining the existing CSHViagtanalysis algorithm and its
flow insensitivity. We then discuss how flow sensitivity canibtroduced to make a context-
sensitive, flow-sensitive algorithm.

subroutine head(x,y) subroutine head(x,y)
double precision :: X,y double precision :: X,y
c$openad INDEPENDENT(x) c$openad INDEPENDENT(x)
call foo(x, y) call foo(x, y)
c$openad DEPENDENT(y) c$openad DEPENDENT(y)
end subroutine end subroutine
subroutine foo(f,g) subroutine foo(f,g)
double precision :: f,g,a double precision :: f,g,a
a=f g=a
g=a a=f
end subroutine end subroutine
(a) All variables are active. (b) No variables are active.

Fig. 1. Example showing the flow insensitivity of the existing CSkiagithm.

VDGAA starts by building a variable dependence graph, whedges represent variables
and edges represent dependence between them [9]. Sindalsevés represented by a single
node in the graph, all definitions and uses of a variable gnesented by the edges coming
in and out the node. The order information among the defimtemd uses cannot be retrieved
from the graph. By building this graph, we assume that alinitésins of a variable reach all
uses of the variable. In terms of activity, this assumptesults in more active variables than
the true active ones. The two code examples in Figure 1 shewbrestimation caused by
flow insensitivity of VDGAA. In Figure 1(a), all five variabdeare active because there is a
value flow path from x to y that includes all five variables— f — a — g — y, while no
variables are active in (b) because no value flow paths exist £ to y.

Figure 2(a) shows a variable dependence graph generated®AX, which produces
the same graph for both codes in Figure 1. Nodes are connedtediirected edges repre-
senting the direction of value flow. The edge labels show tigeeypes, which can be CALL,
RETURN, FLOW, or PARAM. A pair of CALL and RETURN edges is geaied for each
pair of actual and formal parameters if called by refereft€OW edges are generated for
assignment statements, one for each pair of a used variadble defined variable in the state-
ment. PARAM edges summarize the value flows between formanpeters of procedures
such that there is a PARAM edge from a formal parameter tohanat there is a value flow
path between them in the same direction. In Figure 2(a), misf CALL and RETURN
edges show the value flow between actual and formal parasrfetehe two actual parameters
in the call tofoo. The two FLOW edges are generated for the two assignmeenstats in
procedurefoo. The PARAM edge from node 23 to node 25 summarizes the valuepédh
f — a — g. Although not useful in this example, PARAM edges allow &her types of
edges to be navigated only once during the subsequ#i®d andusefulanalyses. The num-
bers in the edge labels show the address of the call expnefesi€ALL and RETURN edges,
which are used to allow color propagations only throughizable control paths. Because of
its flow insensitivity, the same graph is generated fromweedifferent codes in Figure 1, and
hence the same activity output. Although we know this bedrasi VDGAA, determining the
amount of overestimation is not easy.

4 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland
head_(22) head_(27)

X ead_|
{ xa x ya

\
CALL RETURN | RETURN) CALL T cALL T cAlL

foo_(24)
f@

|)
(109365005511093650052) (1083754540 1093650052) +(1093650172) +(1093650172)

head_(25)
Xx@.093650052

foo_(23) foo_(23) fo0_(28)
fa fa oa@

9

FLOW

foo_(33)
a@093649316
foo_(29)

foo_(24)
f@ @

I RETURN T RETURN
1093650172)

head_(25)
x(@093650172

foo_(32)
g@093649244

foo_(32)
a@093649124

PARAM PARAM

foo_(33)
9@093649196

| CALL
4(1093650052)

head_(30)
@.093650172

/ C
\ \(1556%?(,)\‘52)\(1093%%;052) ! mg‘éuzs) f °°§é§g) FLOW
=
Y head_(31) Fl{ head7(30)—‘
(@) The VDG for both LY@ |Fow |y@093650052 (c) The DUG for
Figure 1(a) and (b). (b) The DUG for Figure 1(a). Figure 1(b).

Fig. 2. Def-use graphs generated by the new CSFS algorithm.

We developed a context-sensitive, flow-sensitive actaitglysis algorithm to achieve two
goals. First, we wish to evaluate how well VDGAA performseénrhs of both the analysis run
time and the number of active variables. Second, in the @age®d in Section 1, identifying
several more inactive variables compared with VDGAA is dgsie, even at the cost of the
longer analysis time. The key idea in the new CSFS algoritbidGAA) is to use variable
definitions obtained from UD/DU-chains [1] to represent ttoeles in the graph. DUGAA
combines flow sensitivity of UD/DU-chains with the conteginsitivity of VDGAA. Since
a statement may define more than one varighds a node key we use a pair comprising
a statement and a variable. Figures 2(b) and (c) show the efas® graphs for the two
codes in Figures 1(a) and (b). Unlike the VDG in Figure 2(ag, node labels in DUGs have
a statement address concatenated at the end of the varahke and a symba®. DUG is
similar to system dependence graph[10]. Among other differences, DUG does not have
predicate nodes and control edges. Instead, flow sengits/supported by using UD/DU-
chains. We use two special statement addresses: 1 and 2 foctiming and outgoing formal
parameter nodes, respectively. Since the DUG in Figure I2{s)no path from any of the
independent variable nodes (forto any of the dependent variable nodes §frno variables
are active in the output produced by DUGAA for the code in Fegl(b).

3 Algorithm

In this section, we describe the new activity analysis allgor DUGAA. Similar to VDGAA,
the DUGAA algorithm consists of three major steps:

1. Build a def-use graph.

2. Propagate red color forward from the independent variabtles to find thearied nodes.

3. Propagate blue color backward along the red nodes fromependent variable nodes to
find theactivenodes.

! as in call-by-reference procedure calls of Fortran 77

CSFS Activity Analysis 5

A def-use graph is a tuple (V, E), where a node N represents a definition of a variable in a
program and an edge (n1, R)E represents a value flow from n1l to n2. Since all definitions
of a variable are mapped to their own nodes, flow sensitigifyréeserved in DUG.

Algorithm Build-DUG(program PROG)
UDDUChain« build UD/DU-chains from PROG
DUG « new Graph
DepMatrix < new Matrix
for each procedure Prog CallGraph(PROG) in reverse postorder
for each statement Stmg& Proc
/l'insert edges for the destination operand
for each (Src,Dst) pairc Stmt where Src and Dst are variables
InsertUseDefEdge(Src, Dst, Stmt, Proc)
Il insert edges for the call sites in the statement
for each call site Call to Callee= Stmt
for each (ActualVar,FormalVar) paie Call
InsertCallRetEdges(ActualVar, FormalVar, Stmt, Prod)e&a Call)
connectGlobals()
makeParamEdges()

Fig. 3. Algorithm: Build a def-use graph from the given program.

Figure 3 shows an algorithm to build a DUG. For each stateinesmigiven program, we
generate a FLOW edge from each reaching definition for easttewariable to the definition
of the statement. If the statement contains procedure, eadislso add CALL and RETURN
edges. For global variables, we connect definitions aftepnweess all statements in the pro-
gram. PARAM edges are inserted between formal paramet&srfod each procedure if there
is a value flow path between them. Below, each of the major oot algorithms is de-
scribed in detail.

Algorithm I nsertCallRetEdge(variable Actual,\

Algorithm I nsertUseDefEdge(variable Src)\
variable Dst, stmt Stmt, procedure Proc)
DefNode«— node(Stmt, Dst)

/I edges from uses to the def
for each reaching definition Rd for Src
/I for an upward exposed use
if (Rd is an upward exposed use)
if (Src is a formal parameter)
Rd « stmt(1)
else
if (Src is a global variable)
GlobalUpUse[Src].insert(aRecort(
Dst, Stmt, Proc, callExp(0), Proc))
continue
DUG.addEdge(node(Rd, Src), DefNode,
FLOW, Proc, Proc, Proc, callExp(0))
/I edges for downward exposed definitions
if (Stmt has a downward exposed def)
if (Dstis a formal parameter)
DUG.addEdge(DefNode, node(stmt(R),
Dst), FLOW, Proc, Proc, Proc, callExp(0))
elseif (Dstis a global variable)

GlobalDnDef[Dst].insert(aRecord(Dst, Stnt,

Proc, callExp(0), Proc))

variable Formal, stmt Stmt, procedure Prgc,
procedure Callee, callExp Call)
/I CALL edges from actuals to the formal
for each reaching definition Rd for Actual
if (Rd is an upward exposed use)
if (Actual is a formal parameter)
Rd « stmt(1)
elseif (Actual is a global variable)
GlobalUpUse[Actual].insert(aRecond(
Formal, stmt(1), Callee, Call, Proc))
continue
DUG.addEdge(node(Rd, Actual), node(stmt(l),
Formal), CALL, Proc, Callee, Proc, Call)
/I RETURN edges for call-by-reference parameters
if (Actual is not passed by referenggjurn
DUG.addEdge(node(stmt(2), Formal), node(Stnt,
Actual), RETURN, Callee, Proc, Proc, Call)
/I edges for downward exposed definitions of Actual
if (Stmt has a downward exposed def) // DU-chain
if (Actual is a formal parameter)
DUG.addEdge(node(Stmt, Actual), node(stmt{g),
Actual), FLOW, Proc, Proc, Proc, callExp(0))
elseif (Actual is a global variable)
GlobalDnDef[Actual].insert(aRecord(Actual,
Stmt, Proc, callExp(0), Proc))

Fig. 4. Algorithm: Insert edges.

6 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Flow sensitivity is supported by using variable definitiaigained from UD/DU-chains.
Since a statement may define multiple variables as in catkbBrence function calls, however,
we use both statement address and variable symbol as a npdé/&eenerate two nodes
for each formal parameter: one for the incoming value aloAd ICedge and the other for
the outgoing value along RETURN edge. As discussed in Se&jdwo special statement
addresses are used for the two formal parameter nodes. Jgxposed uses and downward
exposed definitions must be connected properly to formamater nodes and global variable
nodes. Figure 4 shows two algorithms to insert ed@esert UseDefEdge inserts multiple
edges for the given pair of a source variabffec) and a destination variabléét) in an
assignment statemerfitint). UD-chains are used to find all reaching definitionsSet and
to connect them to the definition @bst. If the reaching definition is an upward exposed
use, an edge is connected from an incoming noderdfis a formal parameter; ifrc is
a global variable, the corresponding definitidds{ and Stmt) is stored inGlobalUpUse
for Src together with other information. If the definition &¥st is downward exposed, we
connect an edge from the definition node to the outgoing fopasmeter node iDst is a
formal parameter; for globabst, we store the definition information idlobalDnDef. Later,
we make connections from all downward exposed definitioraltopward exposed uses for
each global variabldnsertCallRetEdge inserts edges between a pair of actual and formal
parameter variables. CALL edges are inserted from eachirgadefinition of the actual
parameter to the incoming node of the formal parameterelfittual parameter is passed by
reference, a RETURN edge is also inserted from the outgomaig of the formal parameter
to the definition node of the actual parametesatt.

Algorithm makeParamEdges()
for each procedure Prog CallGraph(PROG) in postorder
for each node N1 ProcNodes[Proc]
for each node N2e ProcNodes[Proc]
if (N1 == N2)continue
if (DepMatrix[Proc][N1][N2]) continue
if (\DUG.hasOutgoingPathThruGlobal(NQypntinue
if (IDUG.hasIncomingPathThruGlobal(NZ)pntinue
if (DUG.hasPath(N1, N2))
DepMatrix[Proc][N1][N2] = true
transitiveClosure(Proc)
for each formal parameter Formal& Proc
for each formal parameter Formalg Proc
FNodel— node(stmt(1), Formall)
FNode2— node(stmt(2), Formal2)
if (\DepMatrix[Proc][FNodel][FNode2]yontinue
DUG.addEdge(FNodel, FNode2, PARAM, Proc, Proc, ProcEzpl0))
for each call site Calle Callsites[Proc]
Caller— CallsiteToProc[Call]
for each node Actual2e FormalToActualSet[Call][FNode2]
if (Actual2.Symbol is not called by referencg)ntinue
for each node Actualle FormalToActualSet[Call][FNodel]
DepMatrix[Caller][Actuall][Actual2]< true

Fig. 5. Algorithm: Make PARAM edges.

PARAM edges summarize value flow among formal parameterdw anultiple traver-
sals across formal parameter nodes when there are multipplsites for the same procedure.
We add a PARAM edge from an incoming formal parameter ndd® an outgoing formal
parameter nod€& whenever there is a value flow path frdinto f2. Figure 5 shows the al-

CSFS Activity Analysis 7

gorithm that inserts PARAM edges. Whenever a FLOW edge iatete we set an element
of the procedure’s dependence matrix to true. After bujdirDUG for statements and con-
necting global variable nodes, for all pairs of formal pastens we check whether there is a
value flow path between them going through other procedueetw global variables. This
checking is necessary because we perform transitive damly for those definitions used
in each procedure. Next, we apply Floyd-Warshatiansitive closurealgorithm [3] to find
connectivity between all pairs of formal parameter nodeBARAM edge is added whenever
there is a path from one formal node to another. We modifiecbthggnal Floyd-Warshall's
algorithm to exploit the sparsity of the matrix.

Thevariedandusefulanalyses are forward color propagation (with red) from titepen-
dent variable nodes and backward color propagation (wite)dirom the dependent variable
nodes, respectively. The propagation algorithms are iestim our previous work [11].

4 Experiment
We implemented the algorithm described in Section 3 on Opefyis [12] and linked it into
an AD tool called OpenAD/F [13], which is a source-to-soureaslator for Fortran. Figure 6

shows the experimental flow. The generated AD tool was run machine with a 1.86 GHz
Pentium M processor, 2 MB L2 cache, and 1 GB DRAM memory.

[OpenAnal ysi s]
I nput Qut put

(Fortran) (Fortran)
Open64 AD Open64
Fortran 90 Transf or mat i on Fortran 90
Front end Unpar ser

DUGAA

Fig. 6. OpenAD automatic differentiation tool.

Table 1. Benchmarks.

[BenchmarkfDescription [Source [#lines|
MITgcm [MIT General Circulation Model MIT 27376
LU Lower-upper symmetric Gauss-Seidel NASPB 5951
CG Conjugate gradient NASPB 2480
newton [Newton’s method + Rosenbrock function |ANL 2189
adiabatic |Adiabatic flow model in chemical engineerifgMU 1009
msa |Minimal surface area problem MINPACK-2 (461
swirl Swirling flow problem MINPACK-2|355
c2 Ordinary differential equation solver ANL 64

To evaluate our implementation, we used the set of eighttbaadks shown in Table 1.
These benchmarks are identical to the ones used in our pgeework [11] except for the
version of the MIT General Circulation Model, which is abowb times larger.

Figure 7 shows the slowdowns of DUGAA with respect to VDGAAjieh are computed
by dividing the DUGAA run times by the VDGAA run times. Foewtonandc2, the VDGAA
run times were so small that the measurements were zerohEasther six benchmarks,

8 Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland

Slowdown of DUGAA with respect to VDGAA

MITgem LU CG newton adiabatic Msa swirl c2
Benchmarks

Fig. 7. Slowdown in analysis run time: DUGAA with respect to VDGAA.

the slowdowns range between 27 and 106. The benchmarksdeeedrin decreasing order
of program sizes, but the correlation with the slowdownsasapparent. The run time for
DUGAA on MITgcm is 52.82 seconds, while it is 1.71 secondsM®XGAA. Figure 8 show
the component run times for both DUGAA and VDGAA on MITgcmn& VDGAA does
not use UD/DU-chains, the run time for computing UD/DU-cisais zero. However, it take
81.26% of the total run time for DUGAA. Another component tigr of note istransitive
closure which summarizes connectivity by adding PARAM edges betwiermal parameters.
The transitive closure time can be considered as part ohdrajiding but we separated it from
the graph building time because it is expected to take a [awgéon. With respect to transitive
closure times, the slowdown factor was 9.39. The graph a#eig time for coloring was very
small for both algorithms. The slower speed of DUGAA was expe because it would have
many more nodes than VDGAA; The DUG for MITgcm has 13,753 spddereas the VDG
has 5,643 nodes.

80— M -l VDGAA
3-E]1 DUGAA

\
\
60— \ -

Percentage of the total run time (%)

uD-DU Graph Transitive Coloring
Chains closure (varied, useful)
Time components

Fig. 8. Analysis run-time breakdown on MITgcm: DUGAA vs. VDGAA.

CSFS Activity Analysis 9

Our next interest is the accuracy of the produced outputsefor MITgecm and c¢2, the
active variables determined by the two algorithms matcletikeEven for MITgem and c2,
the number of overestimations by VDGAA over DUGAA is not sfgrant; 8 out of 925 for
MITgcm and 1 out of 6 for c2. This result suggests severalipgiges: First, as expected, the
number of overestimations from flow insensitivity is notrsfgcant. Second, the flow sensitiv-
ity of DUGAA can be improved by having more precise UD/DU-itisa For example, actual
parameters passed by reference are conservatively assarbedonscalar type. Hence, the
definition of the corresponding scalar formal parameteesdwt kill the definitions coming
from above. Third, aside from flow sensitivity, other typé®weerestimations can be made in
both algorithms because they share important featuresasighaph navigation. One type of
overestimation filtered by DUGAA is activating formal paret@rs when they have no edges
leading to other active variables except to the correspondictual parameters. Currently,
VDGAA filters out the cases when the formal parameters do age tany outgoing edges
than the RETURN edge going back to the actual parameter whereolor is propagated
from, but it fails to do so when there are other outgoing edgegher passive variables. This
type of overestimation is filtered effectively by DUGAA bysating formal parameter nodes
into two: an incoming node and an outgoing node. Althoughilmaber of reduced overesti-
mations looks small, as argued in Section 1 the additionidéntified passive variables may
significantly reduce tedious human effort in maintaining@é code base such as MITgem.

5 Related Work

Activity analysis is described in literature [2, 6] and irapiented in many AD tools [5, 8, 11].
Hascoet et al. have developed a flow-sensitive algorithradas iterative dataflow analysis
framework [7]. Fagan and Carle compared the static and dignaativity analyses in AD-

IFOR 3.0 [5]. Their static activity analysis is context-s&ive but flow-insensitive. Unlike

other work, this paper describes a new context-sensitie/-$ensitive activity analysis al-
gorithm. Our approach of forward and backward coloring imilsir to program slicing and

chopping [14, 10]. However, the goal in that paper is to ideratll program elements that
might affect a variable at a program point.

6 Conclusion

Fast run time and high accuracy in the output are two impodaalities for activity anal-
ysis algorithms. In this paper, we described a new contensitive, flow-sensitive activity
analysis algorithm, called DUGAA. In comparison with oueyious context-sensitive, flow-
insensitive (CSFI) algorithm on eight benchmarks, DUGA#isre than 27 times slower but
reduces 8 out of 925 and 1 out of 6, determined active by thel @gBrithm for the MIT
General Circulation Model and an ODE solver, respectivéfg. argue that this seemingly
small reduction in number of active variables may signifiareduce tedious human effort
in maintaining a large code base.

The current implementations for both DUGAA and VDGAA can hgioved in several
ways. First, if the nodes for the variables with integraleymre not included in the graph, we
expect that both the run time and the output quality can beawgua. Second, more precise
UD/DU-chains also can improve the output accuracy. Third,might be able to identify
other types of overestimation different from those alremtintified. Fourth, both VDGAA
and DUGAA currently support only Fortran 77. Supportingtfam 90 and C is left as a future
work.

10

Jaewook Shin, Priyadarshini Malusare, and Paul D. Havlan

Acknowledgments

This work was supported by the Mathematical, Informatiow @omputational Sciences Di-
vision subprogram of the Office of Advanced Scientific ConmmResearch, Office of Sci-
ence, U.S. Dept. of Energy, under Contract DE-AC02-06CHBZ13Ve thank Gail Pieper for
proofreading several revisions.

References

1.

2.

10.

11.

12.

13.

14.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmanCompilers: Principles, Techniques,
and Tools Addison-Wesley, 1986.

Christian Bischof, Alan Carle, Peyvand Khademi, and AadMauer. ADIFOR 2.0:
Automatic differentiation of Fortran 77 program&EE Computational Science & Engi-
neering 3(3):18-32, 1996.

. Thomas Cormen, Charles Leiserson, and Ronald Rik@sbduction to AlgorithmsMc-

Graw Hill, 2nd edition, 1990.

. Michael Fagan, Laurent Hascoet, and Jean Utke. Datasemaion alternatives in se-

mantically augmented numerical models.FAroceedings of the Sixth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM)2@@ges 85-94, Los
Alamitos, CA, 2006. IEEE Computer Society.

. Mike Fagan and Alan Carle. Activity analysis in ADIFOR:gbkithms and effective-

ness. Technical Report TR04-21, Department of Computaitiand Applied Mathemat-
ics, Rice University, Houston, TX, November 2004.

. Andreas Griewank Evaluating Derivatives: Principles and Techniques of Altonic

Differentiation Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia,R2000.

. Laurent Hascoét, Uwe Naumann, and Valérie Pascual. B&orecorded” analy-

sis in reverse-mode automatic differentiatiofruture Generation Computer Systems
21(8):1401-1417, 2005.

. Barbara Kreaseck, Luis Ramos, Scott Easterday, MicB#lut, and Paul Hovland. Hy-

brid static/dynamic activity analysis. Proceedings of the 3rd International Workshop on
Automatic Differentiation Tools and Applications (ADTAJOReading, England, 2006.

. Arun Lakhotia. Rule-based approach to computing modaleesion. InProceedings

of the 15th International Conference on Software Engimeggpages 3544, Baltimore,
MD, 1993.

Thomas Reps and Genevieve Rosay. Precise interpratethapping. InProceedings

of the 3rd ACM SIGSOFT Symposium on Foundations of Softwagin&ering pages
41-52, 1995.

Jaewook Shin and Paul D. Hovland. Comparison of two iagct@nalyses for automatic
differentiation: Context-sensitive flow-insensitive wantext-insensitive flow-sensitive.
In ACM Symposium on Applied Computipages 1323-1329, Seoul, Korea, March 2007.
Michelle Mills Strout, John Mellor-Crummey, and Paul Bovland. Representation-
independent program analysis. Pmoceedings of The Sixth ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and EngingeSeptember 2005.
Jean Utke. OpenAD: Algorithm implementation user guidechnical Memorandum
ANL/MCS-TM-274, Mathematics and Computer Science Divisidrgonne National
Laboratory, Argonne, IL, 2004. ftp://info.mcs.anl.govljtechreports/reports/TM-
274.pdf.

Marlg Weiser. Program slicing. IRroceedings of the 5th International Conference on
Software Engineeringpages 439-449, 1981.

